

UNIVERSITY OF AGRONOMIC SCIENCES AND VETERINARY MEDICINE **FACULTY OF VETERINARY MEDICINE**

Splaiul Independenței 105, sector 5, 050097, BUCHAREST, ROMANIA Tel.: + + 4021 318 0469; Fax:+ + 40 21 318 0498

www.fmvb.ro, e-mail: info@fmvb.ro

DEPARTMENT: PRECLINICAL SCIENCES

DISCIPLINE: PHYSIOLOGY

Course teacher: Assoc. Prof. Iuliana CODREANU DVM PhD

THEMATIC AND BIBLIOGRAPHY

- 1. Sistemul digestiv, pag. 271-293
- 2. Homeostazia energetică, pag. 347-370

Bibliography

N. Dojană – Fiziologia animalelor domestice, București, Printech, 2010.

QUESTIONNAIRE

110 questions with five appropriate possible answers (Of these five answers only one is correct)

- 1. The absorption of phosphorus takes place in:
 - a. the entire digestive tract
 - b. stomach
 - c. colon
 - d. jejunum
 - e. duodenum
- 2. The absorption of phosphorus is optimal at the Ca/P ratio of:
 - a. 2/3
 - b. 2/4
 - c. 2/1
 - d. 1/2
 - e. 1/1
- 3. Water plays many roles in the body. One of the roles it does not play is:
 - a. solvent for chemicals
 - b. diffusion medium
 - c. heat transport

- d. lubricant
- e. solvent for ingested fats
- 4. The Ca/P ratio in birds is found between:
 - a. 1/4 1/1
 - b. 1/1 1/2
 - c. 1/2 1/4
 - d. 3/1 3.5/1
 - e. 1/3 1.5/3
- 5. One of the roles that phosphorus does NOT play in the body is:
 - a. enters the composition of the bones
 - b. enters the composition of the teeth
 - c. contributes to maintaining the acid-basic balance of the blood
 - d. contributes to maintaining the acid-basic balance of the urine
 - e. contributes to the nervous influx formation
- 6. In regulating the phosphorus concentration in the blood, the parathyroid hormone has hyperphosphatemia effect through:
 - a. reduction of renal elimination of phosphates
 - b. alteration of the Ca/P ratio
 - c. stimulation of the phosphates absorption
 - d. stimulation of the renal elimination of phosphates
 - e. phosphates mobilization from bones
- 7. The absorption of iron is stimulated by:
 - a. hydrochloric acid
 - b. trypsin
 - c. chymotrypsin
 - d. the presence of phosphates
 - e. the presence of fats
- 8. Through its enzymes (salivary amylase), saliva triggers the digestion of certain food substrates such as:
 - a. glucose
 - b. amino acids
 - c. triglycerides
 - d. starch
 - e. the saliva does not contain enzymes
- 9. The excretion of iron is done by:
 - a. renal pathway
 - b. respiratory pathway
 - c. digestive pathway
 - d. iron is not excreted, being completely recovered from the catabolism products

- e. both urinary and digestive pathways
- 10. Blood phosphorus is:
 - a. only inorganic phosphorus
 - b. only organic phosphorus
 - c. inorganic and organic phosphorus
 - d. none of the answers is valid
 - e. all of the answers are valid
- 11. The hydrochloric acid in the gastric juice is produced by:
 - a. the main cells of the gastric glands
 - b. the parietal cells of the gastric glands
 - c. the intermediate cells of the gastric glands
 - d. the mucous cells of the gastric glands
 - e. the generating cells of the gastric glands
- 12. The activation of pepsinogen:
 - a. takes place in the secretory gastric cell
 - b. takes place through an autocatalytic process at an alkaline pH
 - c. occurs in the presence of hydrochloric acid in the main cells of the gastric glands
 - d. occurs both in the presence of HCl and through an autocatalytic mechanism in the lumen of the digestive tract
 - e. is not required, as it is an active enzyme
- 13. In the synthesis of HCl by the gastric glands, the hydrogen ions in the HCl structure come from:
 - a. lactic acid dissociation
 - b. water dissociation
 - c. CO₂ intracellular dissociation
 - d. carbonic acid intracellular dissociation
 - e. inorganic phosphates intracellular dissociation
- 14. Under the general name of zymogens are known:
 - a. digestive enzymes in general
 - b. digestive proenzymes activated in the lumen of the digestive tract
 - c. gastric juice enzymes
 - d. intestinal juice enzymes
 - e. digestive enzymes released in an active form
- 15. The species that has the most alkaline pH of the saliva along with a higher bicarbonate and phosphate concentration than that of the blood serum at this level is:
 - a. equine
 - b. feline
 - c. ruminants
 - d. swine

- e. none of the above
- 16. The hydrochloric acid in the gastric juice has digestive roles. Among its roles DOES NOT count:
 - a. transformation of pepsinogen into pepsin
 - b. reduction of Fe³⁺ to Fe²⁺
 - c. activation of trypsinogen to trypsin
 - d. inhibition of the gastric secretion
 - e. stimulation of the secretin release
- 17. The hydrochloric acid in the gastric juice has digestive roles. Among its roles DOES NOT count:
 - a. transformation of pepsinogen into pepsin
 - b. reduction of Fe³⁺ to Fe²⁺
 - c. activation of chymotrypsinogen to chymotrypsin
 - d. inhibition of the gastric secretion
 - e. stimulation of the secretin release
- 18. The activation of pepsinogen in pepsin occurs:
 - a. into the secretory gastric cells
 - b. into the intestinal lumen
 - c. on contact with the acidic gastric contents
 - d. anywhere in the compartments and structures mentioned above
 - e. the stomach does not produce pepsinogen but pepsin
- 19. The activation of pepsinogen consist of:
 - a. binding the pepsinogen with the protons (H⁺)
 - b. addition of a peptide residue to the pepsinogen molecule
 - c. cleavage of the pepsinogen molecule to active pepsin and removal of an inhibitory peptide residue
 - d. removal of an inhibitory inorganic radical from the pepsinogen molecule
 - e. none of the answers is correct
- 20. Under the general name of zymogens are known:
 - a. the digestive enzymes in general
 - b. the digestive proenzymes activated in the lumen of the digestive tract
 - c. the gastric juice enzymes
 - d. the intestinal juice enzymes
 - e. the digestive enzymes released in their active form
- 21. Regarding the composition of gastric juice, the following statement is incorrect:
 - a. the proteolytic enzymes of the gastric juice are represented by pepsin and trypsin
 - b. gastric mucus has a high affinity to combine with gastric acid
 - c. the intrinsic factor secreted by the fundic glands has a role in the absorption of vitamin B12

- d. along with hydrochloric acid, carbonic, butyric and lactic acids also compete in achieving a very acidic pH
- e. in infants, gastric lipase is more active than in adults
- 22. The HCl secretion is stimulated by:
 - a. somatostatin
 - b. secretin
 - c. prostaglandins
 - d. gastrin
 - e. epidermal growth factor
- 23. Parietal cells from the gastric glands secrete:
 - a. hydrochloric acid
 - b. pepsin
 - c. pepsinogen
 - d. carbonic anhydrase
 - e. bicarbonate
- 24. Regarding the cephalic phase of the gastric secretion regulation, the following answer is not correct:
 - a. the excitation of the oral mucosa chemoreceptors causes the secretion of gastric juice
 - b. the stimuli have a cephalic origin
 - c. this phase has no humoral (hormonal) component
 - d. the secretion of gastric juice is performed by vago-vagal reflex
 - e. the sight, the smell of the food, as well as the proximity of meal times determine the secretion of gastric juice
- 25. The pyloric glands secrete the hormone called:
 - a. inhibin
 - b. gastrin
 - c. pepsinogen
 - d. insulin
 - e. adrenaline
- 26. Intragastric coagulation of milk is produced by:
 - a. pepsin in adult animals, labferment (rennin) in infants
 - b. lipase
 - c. amylase
 - d. trypsin
 - e. chymotrypsin
- 27. The specificity of pepsin lies in the fact that it:
 - a. hydrolyses the peptide chains of the aromatic amino acids
 - b. hydrolyses the peptide chains of the carboxylic amino acids
 - c. hydrolyses the peptide chains of the basic amino acids

- d. has no specificity, hydrolyzing all proteins
- e. answers a and b are valid
- 28. The optimal pH of action for pepsin is:
 - a. weak acidic (5.5-6)
 - b. neutral
 - c. alkaline
 - d. unimportant
 - e. very acidic (1.5 3)
- 29. Renin from the gastric juice participates in:
 - a. proteins digestion in infant animals
 - b. lipid digestion in infant animals
 - c. carbohydrates digestion in infant animals
 - d. trypsinogen activation
 - e. all the answers are correct
- 30. Renin from the gastric juice is a:
 - a. endopeptidase
 - b. exopeptidase
 - c. lipase
 - d. amylase
 - e. carboxypeptidase
- 31. The main hormone that contributes to the regulation of gastric juice secretion in the gastric phase is:
 - a. secretin
 - b. cholecystokinin
 - c. gastrin
 - d. bombesin
 - e. adrenaline
- 32. The main hormone that contributes to the regulation of gastric juice secretion in the cephalic phase is:
 - a. secretin
 - b. cholecystokinin
 - c. gastrin
 - d. bombesin
 - e. adrenaline
- 33. Gastrin is a hormone produced by the:
 - a. G cells from the gastric mucosa
 - b. I cells from the duodenal epithelium
 - c. oxyntic cells from the gastric glands
 - d. main cells of the gastric glands

- e. gastric epithelium
- 34. In the digestive secretions, the role of the gastrin consist of:
 - a. stimulation of the hydrochloric acid
 - b. inhibition of the gastric glands secretion
 - c. stimulation of the pancreatic secretion
 - d. stimulation of the intestinal secretion
 - e. inhibition of the intestinal secretion
- 35. Gastrin secretion is inhibited by:
 - a. alkaline pH
 - b. acidic pH
 - c. neutral pH
 - d. CCK
 - e. Secretin
- 36. Enterokinase has the following role:
 - a. catalyzes the transformation of trypsinogen into trypsin
 - b. catalyzes the transformation of pepsinogen into pepsin
 - c. catalyzes the transformation of chymotrypsinogen into chymotrypsin
 - d. stimulates the synthesis of pancreatic enzymes
 - e. inhibits the synthesis of pancreatic enzymes
- 37. The secretion of the Brunner glands has the following qualities, except the fact that it is:
 - a. a secretion rich in digestive enzymes
 - b. a mucous secretion
 - c. a secretion devoid of digestive enzymes
 - d. a secretion rich in bicarbonate
 - e. a secretion with a role in protecting the intestinal epithelium
- 38. Enterokinase is produced by:
 - a. the liver
 - b. the Brunner cells
 - c. the Liberkuhn cells
 - d. the gastric glands
 - e. the pancreas
- 39. Which are the three gastric secretion phases?
 - a. cephalic phase, gastric phase, intestinal phase
 - b. cephalic phase, intestinal phase, digestive phase
 - c. gastric phase, intestinal phase, excretion phase
 - d. first gastric phase, second gastric phase, third gastric phase
 - e. digestive phase, absorption phase, excretion phase
- 40. The presence of maltase is a characteristic of:

- a. all digestive secretions
- b. the salivary secretion
- c. the pancreatic secretion
- d. the intestinal secretion
- e. the gastric secretion
- 41. Aminopeptidases have as a specific substrate:
 - a. lipids
 - b. starch
 - c. glycogen
 - d. proteins in general
 - e. peptides
- 42. Carboxypeptidases have as a specific substrate:
 - a. lipids
 - b. starch
 - c. glycogen
 - d. proteins in general
 - e. peptides
- 43. Trypsinogen:
 - a. represents the active form of trypsin
 - b. is a gastric enzyme
 - c. represents the inactive form of trypsin
 - d. activates the chymotrypsinogen
 - e. is activated by chymotrypsinogen
- 44. Most intestinal enzymes exert their action within:
 - a. exodigestion
 - b. luminal digestion
 - c. membrane digestion
 - d. intraluminal digestion
 - e. a specific indication does not exist
- 45. In species with a small capacity gallbladder, it has only role in:
 - a. the water absorption from the bile fluid
 - b. the passage of the bile
 - c. regulator organ of the exhaust pressure
 - d. bicarbonate synthesis
 - e. excretion of the hem catabolism products
- 46. During the period of digestive absorption, the liver and peripheral tissues metabolic processes are directed predominantly towards:
 - a. the liver acts in anabolic way and the peripheral tissues are directed towards consumption

- b. catabolism of the nutrients from the intake
- c. during this period, the liver and the peripheral tissues are over-agglomerated and have a high metabolic activity without any specific target
- d. releasing towards the tissues the excess of nutrients absorbed in order to cover the energy requirements
- e. storage of the nutrients from the intake
- 47. During the period of digestive absorption, the liver:
 - a. retains the triglycerides and converts them into glucose and glycogen that is stored in the liver
 - b. retains the excess of blood glucose and converts it into glycogen and triglycerides
 - c. releases the glucose because it is necessary for the peripheral tissues and its uptake by the liver is not controlled by the insulin
 - d. retains the triglycerides that are stored in the liver determining "fatty infiltration of the liver"
 - e. none of the answers is correct
- 48. At a pH between 6 8, the activation process of the trypsinogen:
 - a. stops
 - b. becomes autocatalytic
 - c. starts
 - d. decrease
 - e. none of the above
- 49. The pancreatic enzyme for digesting carbohydrates is pancreatic amylase, which hydrolyses:
 - a. starch
 - b. glycogen
 - c. cellulose
 - d. amino acids
 - e. answers a and b are correct
- 50. Chylomicrons and low-density lipoproteins in the blood release fatty acids into the peripheral tissues, the process being controlled by:
 - a. thyroxine
 - b. adrenaline
 - c. insulin
 - d. glucagon
 - e. cortisol
- 51. The total amount of glycogen that can be stored in the liver is limited to:
 - a. maximum 5% of the liver's weight
 - b. maximum 20% of the liver's weight
 - c. maximum 2% of the liver's weight
 - d. the liver doesn't store glycogen, it has a metabolic role of synthesis of different energetic substances

- e. maximum 10% of the liver's weight
- 52. The physiological roles of water are as follows, except for:
 - a. diffusion medium
 - b. heat transport
 - c. lubricant to reduce the friction force
 - d. solvent for lipids
 - e. transport of nutrients and cells
- 53. The bile pigments, bilirubin and biliverdin:
 - a. don't have digestive functions
 - b. have a role in the starch digestion
 - c. have a role in the cellulose digestion
 - d. are excreted by the pancreatic acinar cells
 - e. have important digestion functions
- 54. In regulating water metabolism is not involved:
 - a. the antidiuretic hormone
 - b. the vasopressin
 - c. the hypothalamus
 - d. the aldosterone
 - e. the glucagon
- 55. Serum proteins fulfil many functions. One of the functions that is NOT fulfilled by these proteins is:
 - a. transport of the fatty acids
 - b. constitutes source of amino acids for the synthesis of extrahepatic proteins
 - c. role in creating the oncotic pressure of the plasma
 - d. transport vehicle for different hormones
 - e. transport vehicle for different vitamins
- 56. The most important stimulus for causing the gallbladder contractions is the hormone:
 - a. pepsin
 - b. insulin
 - c. parathormone
 - d. cholecystokinin
 - e. bilirubin
- 57. The primary function of the small intestine is to:
 - a. absorb nutrients and their digestive products into the blood
 - b. excrete nutrients and their digestive products into the blood
 - c. increase the amount of nutrients in the body
 - d. reduce the absorption rate of the nutrients
 - e. digest and excrete the nutrients

- 58. The key hormone that plays a role in initiating the mechanisms of conversion of amino acids that come from the digestive absorption into glucose is:
 - a. hydrocortisone
 - b. thyroxine
 - c. cortisol, as a hormone that is released in stressful situations, which requires increased quantities of glucose
 - d. insulin, because it is a hormone with hypoglycaemic role
 - e. glucagon
- 59. In the case of a balanced intake of carbohydrates and proteins, increased aminoacidemia stimulates both insulin and glucagon secretion. Intense glucagon secretion plays the following role:
 - a. decrease of the aminoacidemia
 - b. counteracts the effects of a postprandial hyperinsulinemia by priming the gluconeogenic mechanisms
 - c. contributes to maintaining glycaemia by inhibiting the peripheral glucose uptake
 - d. regulates the serum lipids concentration by lipolysis effect
 - e. none of the answers above is correct
- 60. One of the disadvantages of storing energy in the form of lipids is the fact that:
 - a. the adipose tissue contains little water
 - b. fats, being insoluble in water, require special forms of blood transport
 - c. fatty acids are converted to glucose, decreasing the availability in case of intense energy demands
 - d. lipids are highly reduced substances, which decreases their energy quality
 - e. none of the answers above is correct
- 61. The bicarbonate ions from the intestinal mucus have an important role in:
 - a. neutralizing the liver bile
 - b. neutralizing the pancreatic secretion
 - c. neutralizing the hydrochloric acid entering the duodenum from the stomach
 - d. acidifying the intestinal content
 - e. neutralizing the intestinal content that has a very acidic pH
- 62. The bile salts emulsifying function on the lipids is possible due to the fact that:
 - a. the bile salts decrease the surface tension of the particles
 - b. the bile salts contain lipase
 - c. the bile salts are lipolytic enzymes
 - d. the bile salts are proteolytic enzymes
 - e. none of the answers above is correct
- 63. In the liver, glucagon:
 - a. stimulates glycolysis
 - b. stimulates glycogenolysis
 - c. inhibits glycogenolysis

- d. inhibits gluconeogenesis
- e. stimulates glycogenogenesis
- 64. The mobilization of amino acids from the muscles is stimulated to a large extent by:
 - a. protein catabolizing sex hormones
 - b. thyroxine, released under energy demand conditions
 - c. insulin
 - d. absence of cortisol and insulin deficiency
 - e. absence of insulin and presence of cortisol
- 65. Bile salts, by breaking down fat globules into smaller droplets in a process called emulsification, enhance the digestive action of:
 - a. pepsin
 - b. amylase
 - c. lipase
 - d. trypsin
 - e. chymotrypsin
- 66. The proteolytic digestive enzymes when are first synthesized in the pancreatic cells, they are:
 - a. in the inactive forms trypsinogen, chymotrypsinogen and procarboxypolypeptidase
 - b. in the active forms trypsinogen, chymotrypsinogen and procarboxypolypeptidase
 - c. in the inactive forms trypsin, chymotrypsin and carboxypolypeptidase
 - d. in the active forms trypsin, chymotrypsin and carboxypolypeptidase
 - e. the pancreatic juice does not contain proteolytic enzymes
- 67. The secretion of the sodium bicarbonate from the pancreatic juice is carried out by:
 - a. the ductal cells
 - b. the beta cells of the Langerhans islets
 - c. the pancreatic juice-secreting acini cells
 - d. the alpha cells of the Langerhans islets
 - e. the duodenum epithelial cells
- 68. The fatty acids released from the adipose tissue into the blood, in order to be transported:
 - a. do not require the presence of the vehicle molecules
 - b. are reversibly bound to gamma-globulins
 - c. are reversibly bound to albumins
 - d. are packed in low density lipoproteins
 - e. are packed in chylomicrons
- 69. In order to be activated the pepsinogen must come in contact with:
 - a. pepsin
 - b. secretin.
 - c. trypsin
 - d. hydrochloric acid

- e. sodium bicarbonate
- 70. In long periods of undernutrition or in complete starvation, the body uses for the production of energy mainly:
 - a. free fatty acids
 - b. fatty acids and ketone bodies
 - c. beta-oxidation of fatty acids
 - d. high glycerol release
 - e. lipids synthesis, in order to support this period characteristic energy degradation
- 71. The gastric enzymes are:
 - a. pepsin, rennin and lipase
 - b. pepsin, trypsin and lipase
 - c. pepsin, trypsin and amylase
 - d. trypsin, chymotrypsin and amylase
 - e. amylase, lipase and pepsin
- 72. The gastric juice is secreted continuously. Control of the gastric secretion is achieved through:
 - a. neuronal and humoral (hormonal) mechanisms
 - b. only neuronal mechanism
 - c. only humoral mechanism
 - d. the secretion does not need control, the gastric juice continuously secreted
 - e. neuronal and intrinsic mechanism
- 73. Propionate is an important glucose precursor in ruminants. In ruminants, propionate comes from:
 - a. "de novo" endogenous synthesis
 - b. ruminal absorption as volatile fatty acid
 - c. catabolism of fatty acids
 - d. catabolism of propionic acid
 - e. intermediate glucose catabolism
- 74. Ruminants also ensure glucose storage by protecting its metabolic degradation by the fact that:
 - a. fatty acids are synthesized from acetate
 - b. fatty acids are synthesized from glucose
 - c. do not produce fatty acids
 - d. fatty acids are synthesized from amino acids
 - e. answers a and d are correct
- 75. Ruminants are permanently in a potential state of deficiency of:
 - a. glucose
 - b. propionate
 - c. acetate

- d. proteins
- e. lipids
- 76. The cephalic phase of the gastric secretion occurs:
 - a. when the food enters the stomach
 - b. when the food enters the small intestine
 - c. before the food enters the stomach
 - d. only in ruminants
 - e. only in carnivores
- 77. The pancreatic juice is mainly composed of:
 - a. water, enzymes and hydrochloric acid
 - b. enzymes and sodium bicarbonate
 - c. enzymes, bile and mucus
 - d. water, mucus and hydrochloric acid
 - e. water, pepsin and hydrochloric acid
- 78. The ammonia resulting from amino acid deamination is eliminated from the body in the form of:
 - a. ketone analogues
 - b. urea
 - c. urea ammonium
 - d. alanine
 - e. leucine
- 79. Muscle mass reacts to energy demands by:
 - a. glucose synthesis to support the effort requirements
 - b. amino acids synthesis
 - c. glucose mobilization
 - d. lipids mobilization
 - e. amino acids mobilization
- 80. The water requirement of farm animals is directly proportional with:
 - a. the physiological state
 - b. the degree of dehydration
 - c. weight
 - d. body surface
 - e. age, being higher in old age
- 81. Water plays many roles in the body. One of the roles that it doesn't fulfil is:
 - a. solvent for chemicals
 - b. diffusion medium
 - c. heat transport
 - d. lubricant
 - e. solvent for ingested fats

- 82. The synthesis of most of the ketone bodies in the lipid metabolism is performed in:
 - a. rumen
 - b. intestine
 - c. liver
 - d. kidneys
 - e. lungs
- 83. Regulating calcium metabolism involves controlling the movement of calcium between the extracellular fluid and the following body structures:
 - a. intestine and bone
 - b. bone, liver and gastrointestinal tract
 - c. bone and kidneys
 - d. bone, gastrointestinal tract and kidneys
 - e. gastrointestinal tract
- 84. Increased blood calcium concentration by about 10% causes immediate increase of the secretion of:
 - a. parathormone
 - b. calcitonin
 - c. cortisol
 - d. androgen hormones
 - e. estrogenic hormones
- 85. The hormone that stimulates osteoclast activity and the renal calcium reabsorption is:
 - a. parathormone
 - b. calcitonin
 - c. insulin
 - d. glucagon
 - e. estrogens
- 86. The intestinal phase of gastric juice secretion regulation is triggered by:
 - a. the food entering into the stomach
 - b. the food entering into the duodenum
 - c. the fodder ingestion
 - d. immediately after the food prehension, mastication and deglutition
 - e. in the cephalic phase
- 87. The main pancreatic enzyme involved in the digestion of the ingested fats is:
 - a. amylase
 - b. bile
 - c. pepsin
 - d. trypsin
 - e. lipase

- 88. The inhibitory role of secretin on the secretion of gastric juice is exercised by:
 - a. it acts directly on the main cells that secret gastric juice
 - b. it acts on the G cells that secret gastrin
 - c. it acts on the oxyntic cells by directly inhibiting the secretion of gastric juice overall
 - d. answers a and b are correct
 - e. secretin is not a hormone that plays a role in the regulation of the gastric juice secretion
- 89. One of the following hormones has no inhibitory effects on the gastric juice secretion:
 - a. secretin
 - b. cholecystokinin
 - c. somatostatin
 - d. enteroglucagon
 - e. gastrin
- 90. Regarding the intestinal phase of the pancreatic juice secretion regulation, one of the following answers is not correct:
 - a. involves endocrine and nervous stimuli
 - b. peptides, fats and low pH in the duodenal lumen determine the gastrin secretion
 - c. nervous regulation is mediated vagally
 - d. the low pH also determines the secretion of the hormone secretin from the duodenal epithelium
 - e. the secretion of cholecystokinin in this phase, determines a pancreatic juice rich in enzymes
- 91. The composition of the bile consists of:
 - a. bile salts
 - b. cholesterol
 - c. biliary pigments
 - d. fatty acids
 - e. all the answers are correct
- 92. The enzyme that stimulates the carbonic acid synthesis required for the production of pancreatic sodium bicarbonate is:
 - a. pepsin
 - b. trypsin
 - c. chymotrypsin
 - d. carbonic anhydrase
 - e. bicarbonic anhydrase
- 93. The pancreatic juice contains many proteases. One of the proteases that it does not contain is:
 - a. trypsin
 - b. chymotrypsin
 - c. carboxypeptidase

- d. collagenase
- e. pepsin
- 94. The notion of zymogen is synonymous with that of:
 - a. proenzyme
 - b. active enzyme, inactivated in the digestive lumen
 - c. lipase
 - d. glycolytic enzyme
 - e. answers a and b are correct
- 95. Activation of trypsinogen in the pancreatic juice is accomplished by:
 - a. trypsin
 - b. autocatalytic
 - c. enterokinase
 - d. answers a, b and c are correct
 - e. none of the answers is correct
- 96. The activation of chymotrypsinogen consists of:
 - a. creating a slightly alkaline pH, optimal for activation
 - b. removing some peptide fragments from its molecule structure
 - c. providing the specific substrate is sufficient for activation
 - d. chymotrypsinogen is an active enzyme, it does not require activation
 - e. answers a and b are correct
- 97. Intra-intestinal coagulation of milk is accomplished by:
 - a. pepsin
 - b. trypsin
 - c. chymotrypsin
 - d. no enzyme in the intestine, milk coagulation takes place in the stomach
 - e. answers b and c are correct
- 98. The regulation of bile secretion is done through a mechanism:
 - a. positive feedback
 - b. negative feedback
 - c. feed forward
 - d. push-pull
 - e. none of the above, the bile secretion is continuous
- 99. The hormone with the main choleretic role is:
 - a. gastrin
 - b. cholecystokinin
 - c. secretin
 - d. motilin
 - e. gastric inhibitory peptide

- 100. In which of the following digestive secretions the bicarbonate cannot be found:
 - a. bile
 - b. pancreatic juice
 - c. gastric juice
 - d. intestinal juice
 - e. none of the above contains bicarbonate
- 101. The properties of pancreatic juice are the following except for:
 - a. it is a colorless liquid
 - b. it is slightly viscous
 - c. has a high sodium bicarbonate content
 - d. has an acidic pH
 - e. contains proteolytic, glycolytic and lipolytic enzymes
- 102. The properties of gastric juice are the following except for:
 - a. it is a colorless liquid
 - b. it is relatively isotonic with the plasma
 - c. it has a very acidic pH
 - d. it contains organic substances represented by enzymes, mucus and intrinsic factor
 - e. the gastric glands secrete proteolytic, glycolytic and lipolytic enzymes
- 103. The following statement about zymogens is not correct:
 - a. are active proteolytic enzymes
 - b. their secretion is necessary to avoid the autodigestion of the synthesizing cells
 - c. are represented by pepsinogen, trypsinogen, chymotrypsinogen
 - d. are activated in the digestive lumen
 - e. are stored in the cytoplasm of synthesizing cells until their release into the lumen of the digestive tract
- 104. Regarding the glucose metabolism, the following answer is not correct:
 - a. the absorbed glucose is conducted through the portal vein
 - b. the excess glucose is stored as liver glycogen and triglycerides
 - c. the glucose released by the liver processing is stored as muscle glycogen
 - d. the transport of glucose in the liver and muscles is controlled by insulin
 - e. the process of glucose degradation is done by glycogenolysis
- 105. Between meals or in periods of starvation:
 - a. glycogenolysis and gluconeogenesis are stimulated
 - b. gluconeogenesis is inhibited
 - c. glycogenesis is stimulated
 - d. glycolysis is stimulated
 - e. is done the switch to glucose consumption
- 106. Regarding the amino acids metabolism, the following answer is not correct:
 - a. some of the amino acids retained by the liver are used for the synthesis of own proteins

- b. the liver synthesizes most of the serum proteins
- c. serum proteins are a source of amino acids for extrahepatic syntheses
- d. most of the absorbed amino acids undergo a deamination process in the liver
- e. by amino acids deamination of the corresponding ketoanalogues are formed

107. Regarding the lipid metabolism, the following answer is not correct:

- a. triglycerides represent the ideal form of energy storage
- b. triglycerides have twice the energy value of carbohydrates and proteins
- c. fatty acids can be easily converted into glucose, so they contribute to the energy supply of the CNS
- d. fats require special forms of transport
- e. lipids are absorbed through the intestinal wall in the form of micelles of mono-, di- or triglycerides, glycerol and fatty acids

108. Trypsin:

- a. is an exopeptidase
- b. is secreted in its active form
- c. initially acts at an acidic pH
- d. enterokinase causes trypsin activation
- e. is a glycolytic enzyme

109. Cholecystokinin:

- a. is secreted by the "I" cells in the jejunal mucosa
- b. acts on ductal cells causing the secretion of a pancreatic juice poor in protein
- c. the CCK secretion is stimulated by the acidic pH reached in the duodenum
- d. it acts on acinar cells causing the secretion of a pancreatic juice rich in enzymes
- e. the CCK secretion is stimulated by the sympathetic nerve endings

100. Regarding the proteins digestion, the following answer is not correct:

- a. endopeptidases release free amino acids from the protein molecule
- b. the proteases are secreted in inactive form
- c. luminal digestion of proteins begins in the stomach
- d. the active rennin coagulates the milk at pH 4.5-5
- e. nucleases hydrolyze nucleic acids